Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(11): 5083-5097, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38453174

RESUMO

Zeolites modified with metal cations are perspective catalysts for converting light alkenes to valuable chemicals. A crucial step of the transformation is an alkene interaction with zeolite to afford π-complex with metal cations. The mechanism of alkene bonding with cations is still unclear. To address this problem, propene adsorption on H+ (BroÌ·nsted acid site), Na+, Ca2+, Zn2+, Co2+, Cu2+, Cu+, and Ag+ cationic sites in ZSM-5 zeolite has been studied by quantum chemical calculations in terms of adsorption enthalpy, νC═C frequency, and natural bond orbital (NBO) analysis together with natural energy decomposition analysis (NEDA). It is revealed that the conventional concept of σ- and π-bonding is only partially applicable to alkene interaction with metal cations in zeolites. The orbital interaction between an alkene molecule and a metal site is more complex. Several different bonding mechanisms have been identified depending on the nature and electron configuration of the metal cation. This finding explains the complex correlations observed for propene π-complex stability and νC═C frequency shift or charge transfer from the alkene molecule. The results provide the basis for further understanding the interactions between alkenes and inorganic solid BroÌ·nsted and Lewis acids.

2.
Phys Chem Chem Phys ; 25(41): 28043-28051, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37847194

RESUMO

67Zn MAS NMR spectroscopy was used to characterize the state of Zn in Zn-modified zeolites ZSM-5. Two 67Zn enriched zeolite samples were prepared: by solid-state exchange with metal 67Zn (Zn2+/ZSM-5 sample) and by ion exchange with zinc formate solution (ZnO/H-ZSM-5 sample), both containing ca. 3.8 wt% Zn. The elemental analysis, TEM, and quantitative BAS and aluminum analyses with 1H and 27Al MAS NMR have shown that Zn2+/ZSM-5 contains zinc in the form of Zn2+ cations, while both ZnO species and Zn2+ cations are present in ZnO/H-ZSM-5 besides BAS. 67Zn MAS NMR has detected the signal of Zn in a tetrahedral environment from ZnO species for both the activated and hydrated ZnO/H-ZSM-5 zeolite. The signal of Zn in an octahedral environment was detected for the hydrated Zn2+/ZSM-5 and ZnO/H-ZSM-5 zeolites. This signal may belong to zinc cation [HOZn]+ or Zn(OH)2 species surrounded by water molecules. Quantitative 67Zn MAS NMR analysis has shown that only 27 and 38% of zinc loaded in the zeolite is visible for the activated and hydrated ZnO/H-ZSM-5 zeolite, and 24% of Zn is visible for the hydrated Zn2+/ZSM-5. Zinc in the form of ZnO species is entirely visible in both the activated and hydrated ZnO/H-ZSM-5 zeolite, while Zn2+ cations are not detected at all for the activated sample and only 29% of Zn2+ cations is visible for the hydrated zeolite. Detection of only a part of Zn2+ cations in the form of [HOZn]+ or Zn(OH)2 species in octahedral environment presumes only partial hydrolysis of the bond of Zn2+ cation with framework oxygen and further solvation of the Zn species formed at hydrolysis by the adsorbed water.

3.
Chemistry ; 29(5): e202202962, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36310393

RESUMO

Kinetics of H/D hydrogen exchange between deuterated isobutane-d10 and Brønsted acid sites (BAS) of three zeolite samples (H-BEA, ZnO/H-BEA, Zn2+ /H-BEA) were monitored with 1 H MAS NMR in situ at 343-468 K. The regioselective H/D exchange in the methyl groups detected on H-BEA can be rationalized in terms of the mechanism of indirect exchange, which involves protonation of the intermediate olefin and further hydride abstraction from the other alkane molecule by the formed carbenium ion. Loading of Zn species in the zeolite results in a decrease of the rate and an increase of the activation energy of the exchange. The loaded Zn species provide the tuning effect on the reaction occurrence, changing the mechanism from the indirect one to the mechanism of the direct exchange.


Assuntos
Butanos , Zeolitas , Butanos/química , Zeolitas/química , Hidrogênio/química , Alcanos , Zinco/química
4.
Phys Chem Chem Phys ; 24(36): 22241-22249, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36098054

RESUMO

13C MAS NMR spectroscopy is a powerful technique to study the mechanisms of hydrocarbon transformations on heterogeneous catalysts. It can reliably identify the surface intermediates and the adsorbed products based on the analysis of their 13C chemical shifts, δ(13C). However, the unambiguous assignment of the detected signals is always a challenge due to the uncertainty of the nature of the surface intermediates formed and the mechanism of adsorbed species interaction with active sites. The way to solve this problem is the application of DFT calculations to predict chemical shifts for the expected intermediate hydrocarbon species. Herein, the methodology for δ(13C) chemical shift calculations for adsorbed species has been proposed. It includes: (i) zeolite framework optimization with periodic DFT (pPBE); (ii) medium-sized cluster geometry optimization with hybrid GGA (PBE0), and (iii) σ(13C) values calculation followed by δ(13C) estimation using the linear regression method. It is inferred that the TPSS/cc-pVTZ method provides the best computational cost/accuracy ratio for the set of adsorbed hydrocarbon species that was previously detected experimentally on the surface of Zn-containing zeolites. The drawbacks of the computation method have also been revealed and discussed.

5.
Phys Chem Chem Phys ; 24(11): 6492-6504, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35254352

RESUMO

The reactivity theories and characterization studies for metal-containing zeolites are often focused on probing the metal sites. We present a detailed computational study of the reactivity of Zn-modified BEA zeolite towards C-H bond activation of the methane molecule as a model system that highlights the importance of representing the active site as the whole reactive ensemble integrating the extra-framework ZnEF2+ cations, framework oxygens (OF2-), and the confined space of the zeolite pores. We demonstrate that for our model system the relationship between the Lewis acidity, defined by the probe molecule adsorption energy, and the activation energy for methane C-H bond cleavage performs with a determination coefficient R2 = 0.55. This suggests that the acid properties of the localized extra-framework cations can be used only for a rough assessment of the reactivity of the cations in the metal-containing zeolites. In turn, studying the relationship between the activation energy and pyrrole adsorption energy revealed a correlation, with R2 = 0.80. This observation was accounted for by the similarity between the local geometries of the pyrrole adsorption complexes and the transition states for methane C-H bond cleavage. The inclusion of a simple descriptor for zeolite local confinement allows transferability of the obtained property-activity relations to other zeolite topologies. Our results demonstrate that the representation of the metal cationic species as a synergistically cooperating active site ensembles allows reliable detection of the relationship between the acid properties and reactivity of the metal cation in zeolite materials.

6.
Chemphyschem ; 23(1): e202100587, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34505329

RESUMO

To clarify the effects of different Zn species, zeolite topology and acidity (quantity of Brønsted acid sites, BAS) on alkane aromatization, isobutane transformation on Zn2+ /H-ZSM-5, Zn2+ /H-BEA, and ZnO/H-BEA zeolites has been monitored with 13 C MAS NMR. The alkane transformation has been established to occur by aromatization and hydrogenolysis pathways. Zn2+ species is more efficient for the aromatization reaction because aromatic products are formed at lower temperatures on Zn2+ /H-BEA and Zn2+ /H-ZSM-5 than on ZnO/H-BEA. The larger quantity of BAS in ZnO/H-BEA seems to provide a higher degree of the hydrogenolysis pathway on this catalyst. The mechanism of the alkane aromatization is similar for the zeolites of different topology and containing different Zn species, with the main reaction steps being the following: (i) isobutane dehydrogenation to isobutene via isobutylzinc; (ii) isobutene stabilization as a π-complex on Zn sites; (iii) isobutene oligomerization via the alkene insertion into Zn-C bond of methyl-σ-allylzinc formed from the π-complex; (iv) oligomer dehydrogenation with intermediate formation of polyene carbanionic structures; (v) aromatics formation via further polyene dehydrogenation, protonation, cyclization, deprotonation steps with BAS involvement.


Assuntos
Zeolitas , Óxido de Zinco , Butanos , Espectroscopia de Ressonância Magnética , Zinco
7.
Phys Chem Chem Phys ; 23(34): 18925-18929, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612431

RESUMO

The relationship between the adsorption of water on MIL-53 (Al) MOF, the structural phase of MIL-53 (Al), and the quadrupole coupling constant of 27Al framework aluminium atom (QCC) of the MOF AlO4(OH)2 centres (Al-sites) has been investigated by combining solid-state 27Al MAS NMR spectroscopy with XRD analysis and DFT calculations. It is established that 27Al QCC is primarily sensitive to water adsorption to the Al-sites and by a minor extent to the framework contraction/expansion interconversions. We thus conclude that the 27Al MAS NMR method is sensitive enough to differentiate the effects of pore contractions and water adsorption to Al-sites basing on the changes of the QCC value.

8.
Phys Chem Chem Phys ; 22(41): 24004-24013, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33075116

RESUMO

The influence of the model and method choice on the DFT predicted 13C NMR chemical shifts of zeolite surface methoxide species has been systematically analyzed. Twelve 13C NMR chemical shift calculation protocols on full periodic and hybrid periodic-cluster DFT calculations with varied structural relaxation procedures are examined. The primary assessment of the accuracy of the computational protocols has been carried out for the Si-O(CH3)-Al surface methoxide species in ZSM-5 zeolite with well-defined experimental NMR parameters (chemical shift, δ(13C) value) as a reference. Different configurations of these surface intermediates and their location inside the ZSM-5 pores are considered explicitly. The predicted δ value deviates by up to ±0.8 ppm from the experimental value of 59 ppm due to the varied confinement of the methoxide species at different zeolite sites (model accuracy). The choice of the exchange-correlation functional (method accuracy) introduces ±1.5 ppm uncertainty in the computed chemical shifts. The accuracy of the predicted 13C NMR chemical shifts for the computational assignment of spectral characteristics of zeolite intermediates has been further analyzed by considering the potential intermediate species formed upon methane activation by Cu/ZSM-5 zeolite. The presence of Cu species in the vicinity of surface methoxide increases the prediction uncertainty to ±2.5 ppm. The full geometry relaxation of the local environment of an active site at an appropriate level of theory is critical to ensure a good agreement between the experimental and computed NMR data. Chemical shifts (δ) calculated via full geometry relaxation of a cluster model of a relevant portion of the zeolite lattice site are in the best agreement with the experimental values. Our analysis indicates that the full geometry optimization of a cluster model at the PBE0-D3/6-311G(d,p) level of theory followed by GIAO/PBE0-D3/aug-cc-pVDZ calculations is the most suitable approach for the calculation of 13C chemical shifts of zeolite surface intermediates.

9.
Chemphyschem ; 21(17): 1951-1956, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32697428

RESUMO

We present a detailed solid-state NMR characterization of the molecular dynamics of tert-butyl alcohol (TBA) confined inside breathing metal-organic framework (MOF) MIL-53(Al). 27 Al MAS NMR has demonstrated that TBA adsorption induces the iX phase of MIL-53 material with partially shrunk channels. 2 H solid-state NMR has shown that the adsorbed alcohol exhibits anisotropic rotations of the methyl groups around two C 3 axes and librations of the molecule as a whole about the axis passing through the TBA C-O bond. These librations are realized by two distinct ways: fast molecule orientation change during the translational jump diffusion along the channel with characteristic time τD of about 10-9  s at 300 K; slow local librations at a single coordination site, representing framework hydroxyl groups, with τl ≈10-6  s at 300 K. Self-diffusion coefficient of the alcohol in the MOF has been estimated: D=3.4×10-10  m2 s-1 at 300 K. It has been inferred that both the framework flexibility and the interaction with framework hydroxyl groups define the dynamics of TBA confined in the channels of MIL-53 (Al).

10.
Inorg Chem ; 59(3): 2037-2050, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31971794

RESUMO

Cu-modified zeolites have enormous potential as the catalysts facilitating the conversion of methane to methanol. It becomes important to investigate the active sites and the reaction mechanisms involved. In this paper, several spectroscopic methods such as UV-vis diffuse reflectance spectroscopy (UV-vis DRS), pulse electron paramagnetic resonance (EPR), diffuse reflectance Fourier transform infrared spectroscopy, and solid-state (13C MAS) NMR have been employed to characterize the state of the Cu sites and the intermediates formed during the catalyst activation and methane-to-methanol transformation on Cu/H-ZSM-5 zeolite with low (0.10 wt %) Cu content. UV-vis DRS and EPR data imply the presence of two types of Cu2+ cations bound to the zeolite framework Si-O--Al sites (Z). One of them is a species of the type Z[Cu(II)O] or Z[Cu(II)(OH)] with extra-framework O- or OH- ligands. The other one refers to Z2Cu(II) species without extra-framework O-containing ligands. CW EPR studies reveal that the Z2Cu(II) species are the major part of the Cu(II) sites present in the zeolite. 1H HYSCORE and DRIFTS data are supportive of the formation of a molecular complex of methane and Z2Cu(II) species, with a strongly polarized C-H bond and a 3.3 Å separation between the hydrogen atom of methane and Cu. 13C MAS NMR provides evidence for the formation of both the surface methoxy intermediate and physisorbed methanol. It is suggested that experimentally identified Z[Cu(II)O] or Z[Cu(II)(OH)] are those sites that provide a homolytic cleavage of the methane C-H bond to yield surface bound methoxy species and/or methanol molecule, the possibility that has been recently justified with density functional theory ( Kulkarni et al. Catal. Sci. Technol. 2018 , 8 , 114 ). The comparison of the amount of the surface methoxy intermediates formed and the number of different Cu(II) sites present in the zeolite allowed us to conclude the involvement of Z2Cu(II) sites in methane C-H bond activation. The mechanism of methane activation on Z2Cu(II) sites has been proposed. It includes two steps: (1) the formation of the molecular complex of methane with Z2Cu(II); (2) heterolytic dissociation of the polarized C-H bond affording surface copper(II) hydride and methoxy species, both bound to zeolite framework Si-O--Al sites.

11.
Chemistry ; 25(46): 10808-10812, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31241210

RESUMO

Coordinatively unsaturated metal sites (CUS) play an important role in catalysis by metal-organic frameworks (MOF). Being an intrinsic part of the framework the CUS take the role of acidic sites active in industrially relevant processes such as condensation or oxidation reactions. The key step of such reactions represents the coordination of the reagents to CUS. In MOFs the mechanism of the reagent interaction with CUS is poorly understood. Herein, we characterize the interaction of a widely used acidity probe pyridine with CUS of MIL-100(Al) MOF by means of the 2 H solid-state NMR spectroscopy. 2 H NMR reveals that pyridine species, which are interacting with CUS and the ones which are coordinated to the Al-OH site, exhibit different motional behavior. 2 H NMR line shape as well as T1 , T2 relaxation analyses for [D5 ]pyridine adsorbed in MIL-100(Al) allowed us to perform a detailed characterization of pyridine dynamics in both states including the kinetics of the exchange process between these adsorption states.

12.
Phys Chem Chem Phys ; 18(9): 6465-75, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26862594

RESUMO

This work reports new physical insights of the thermodynamic parameters and mechanisms of possible interactions occurring in polymers subjected to high-pressure CO2. ATR-FTIR spectroscopy has been used in situ to determine the thermodynamic parameters of the intermolecular interactions between CO2 and different functional groups of the polymers capable of specific interactions with sorbed CO2 molecules. Based on the measured ATR-FTIR spectra of the polymer samples subjected to high-pressure CO2 (30 bar) at different temperatures (300-340 K), it was possible to characterize polymer-polymer and CO2-polymer interactions. Particularly, the enthalpy and entropy of the formation of the specific non-covalent complexes between CO2 and the hydroxy (-OH), carbonyl (C[double bond, length as m-dash]O) and hydroxyimino ([double bond, length as m-dash]N-OH) functional groups of the polymer samples have been measured. Furthermore, the obtained spectroscopic results have provided an opportunity for the structure of these complexes to be proposed. An interesting phenomenon regarding the behavior of CO2/polymer systems has also been observed. It has been found that only for the polyketone, the value of enthalpy was negative indicating an exothermic process during the formation of the CO2-polymer non-covalent complexes. Conversely, for the polyoxime and polyalcohol samples there is a positive enthalpy determined. This is a result of the initial polymer-polymer interactions requiring more energy to break than is released during the formation of the CO2-polymer complex. The effect of increasing temperature to facilitate the breaking of the polymer-polymer interactions has also been observed. Hence, a mechanism for the formation of CO2-polymer complexes was suggested based on these results, which occurs via a two-step process: (1) the breaking of the existing polymer-polymer interactions followed by (2) the formation of new CO2-polymer non-covalent interactions.

13.
J Phys Chem Lett ; 5(1): 20-4, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26276175

RESUMO

Reversible structural rearrangements ("breathing") of metal-organic frameworks (MOFs) are interesting and complex phenomena with many potential applications. They are often triggered by small amounts of adsorbed guest molecules; therefore, the guest-host interactions in breathing MOFs are intensively investigated. Due to the sensitivity limitations, most analytical methods require relatively high concentrations of guests in these studies. However, because guest molecules are not "innocent", breathing behavior may become suppressed and unperturbed structural states inaccessible. We propose here the use of guest nitroxide molecules in tiny concentrations (such as 1 molecule per 1000 unit cells), which serve as spin probes for electron paramagnetic resonance (EPR), for effective study of breathing phenomena in MOFs. Using a perspective MIL-53(Al) framework as an example, we demonstrate the great advantage of this general approach, which avoids perturbation of the framework structure and allows in-depth investigation of guest-host interactions in the breathing mode.

14.
Phys Chem Chem Phys ; 12(19): 5149-55, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20445917

RESUMO

Kinetics of hydrogen H/D exchange between Brønsted acid sites of pure acid-form and Zn- or Ga-modified zeolites beta (BEA) and deuterated hydrogen (D(2)) has been studied by (1)H MAS NMR spectroscopy in situ within the temperature range of 383-548 K. A remarkable increase of the rate of the H/D exchange has been found for Zn- and Ga-modified zeolites compared to the pure acid-form zeolite. The rate of exchange for Zn-modified zeolite is one order of magnitude higher compared to the rate for Ga-modified zeolite and two orders of magnitude larger compared to the pure acid-form zeolite. This promoting effect of metal on the rate of H/D exchange was rationalized by a preliminary dissociative adsorption of molecular hydrogen on metal oxide species or metal cations. The adsorbed hydrogen is further involved in the exchange with the acid OH groups located in vicinity of metal species. The role of different metal species in the possible mechanisms of the exchange with involvement of zeolite Brønsted acid sites and metal species is discussed.

15.
Solid State Nucl Magn Reson ; 35(2): 113-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19186034

RESUMO

Ethane conversion into aromatic hydrocarbons over Zn-modified zeolite BEA has been analyzed by high-temperature MAS NMR spectroscopy. Information about intermediates (Zn-ethyl species) and reaction products (mainly toluene and methane), which were formed under the conditions of a batch reactor, was obtained by (13)C MAS NMR. Kinetics of the reaction, which was monitored by (1)H MAS NMR in situ at the temperature of 573K, provided information about the reaction mechanism. Simulation of the experimental kinetics within the frames of the possible kinetic schemes of the reaction demonstrates that a large amount of methane evolved under ethane aromatization arises from the stage of direct ethane hydrogenolysis.


Assuntos
Etano/química , Hidrocarbonetos Aromáticos/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Modelos Moleculares , Zeolitas/química , Zinco/química , Catálise , Simulação por Computador , Temperatura Alta , Conformação Molecular
16.
Chemphyschem ; 9(17): 2559-63, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18972491

RESUMO

Herein, we analyze earlier obtained and new data about peculiarities of the H/D hydrogen exchange of small C(1)-n-C(4) alkanes on Zn-modified high-silica zeolites ZSM-5 and BEA in comparison with the exchange for corresponding purely acidic forms of these zeolites. This allows us to identify an evident promoting effect of Zn on the activation of C-H bonds of alkanes by zeolite Brønsted sites. The effect of Zn is demonstrated by observing the regioselectivity of the H/D exchange for propane and n-butane as well as by the increase in the rate and a decrease in the apparent activation energy of the exchange for all C(1)-n-C(4) alkanes upon modification of zeolites with Zn. The influence of Zn on alkane activation has been rationalized by dissociative adsorption of alkanes on Zn oxide species inside zeolite pores, which precedes the interaction of alkane with Brønsted acid sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...